PHY 250 (P. Horava) Homework Assignment 1 Solutions
Grader: Uday Varadarajan

1. Problem 1.4 of Polchinski, Vol. 1:

(a) Consider the states of the open string spectrum at level N = 2, all of which have masses given

by m? = (N —1)/a’ =1/, .
aila{1|0>7 a22|0>7 (1'1)

where ¢,7 = 1,...,D — 2. Note that due to Bose symmetry, the first set of states makes up
a symmetric 2-tensor of SO(D — 2), which decomposes into a symmetric traceless 2-tensor
and a scalar of SO(D — 2). The second state is just a vector of SO(D — 2). Now, a traceless
symmetric 2-tensor e/” = e/l el =0, I,J=1,...,D —1 of SO(D — 1) transforms under an
SO(D — 2) subgroup as a traceless symmetric 2-tensor e = e, a vector etP—1) = (D-1)i,
and a scalar e(P~D(P=1_ Thus, the states at level N = 2 of the open string sit nicely in the
traceless symmetric 2-tensor representation of SO(D — 1) as was required.
For N = 3, we have the states,
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Again, by Bose symmetry, the first set of states is a traceless symmetric 3-tensor and a single
vector trace of SO(D — 2). However, the second set of states now includes an antisymmetric
part, and so consists of a traceless symmetric 2-tensor, an antisymmetric 2-tensor, and a
scalar of SO(D — 2), while the third set corresponds to a vector of SO(D — 2). Now, the
antisymmetric 2-tensor b/ = —b/Tof SO(D — 1) decomposes to an antisymmetric 2-tensor
b9 = —b7 and vector b P~V = —p(P=Di of SO(D — 2), while the traceless symmetric 3-
tensor e/ /K = /1K — ... of SO(D — 1) decomposes into a traceless symmetric 3-tensor e*/*
a traceless symmetric 2-tensor e (D=1) = iD=1)j — (D-1)j — .-+, a vector el D-1(D-1) —
e(P=DiD=1) — o(P=1)(D=1)i and a scalar eP~DP-DP-1) of SO(D —2). Thus, we find that
at level N = 3, the states of an open string combine to form an antisymmetric 2-tensor and
a symmetric traceless 3-tensor of SO(D — 1).

(b) Note that the closed string at some level N = N is just the tensor product of two copies of
the open string at level N, so we find that the closed string at level N = 2 just consists of a
tensor product of two traceless symmetric 2-tensors e!/éX% = (I « J K « L), of SO(D—1).

2. We consider the twisted sector of an orientifold of closed oriented bosonic strings in flat R?6. That
is, we impose the conditions that

XH (1,0 +4) =X"(1,0 — 0) (1.3)

XH*(1,0 — ) =XH(1,£ - 0). (1.4)

We will work in light-cone gauge and look for a general solution to these boundary conditions. Note

that the combination of the two boundary conditions requires that X#* (7,0 + ¢) = X# (1,0 — () is
periodic in o with period 2¢. Thus, we start with the expansion (ignoring numerical factors),

Xi(r,0) = +p7+cz{ n == (oter) | On -z (o >}. (1.5)
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Now, we impose the first condition, which we can think of as a Zy orbifold of the worldsheet, with
two fixed points. This condition is satisfied by requiring that a, = —a® ,. Note that as a result,

the second condition is automatically satisfied, and we are left with a single set of independent
oscillators, just as in the case of the open string,
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In fact, we can interpret this twisted sector as unoriented open strings corresponding to fluctuations
of a space-filling D-brane. With this interpretation, we see that both conditions above are needed
to ensure that a pair of boundaries (the two fixed points) appear a finite length apart on the
worldsheet with Neumann-like boundary conditions.

. Problem 1.9 of Polchinski, Vol 1: We consider closed oriented bosonic strings on R?6/Z,, where
the orbifold acts by reflection in the X?2° direction. The oscillator expansion is the same as in the
unwrapped closed string for X?, i =2,...,24,
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However, X2? for a twisted sector state must be antiperiodic, which eliminates the constant modes
and requires that the oscillators be half-integrally moded,
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First note that the lack of zero modes corresponding to position and momentum in the £2° direction
implies that the twisted sector states are localized to the origin in 22°. Second, note that reality
requires that

(@) =a®, _, (@25, =d%,_, (1.9)
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From this expression we can guess that the appropriate commutation relation for the oscillators
must be
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More precisely, these commutation relations are precisely what are needed to reproduce the canon-
ical equal time commutation relations

1% (0), X*(0)] = é(0 — o), (L.11)
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where 11?° = %&X 25 is the momentum conjugate to X2° in light-cone gauge. Plugging the
oscillator expansions into the Hamiltonian in light-cone gauge given by,
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We have used, in the last line, the heuristic result from Polchinski Problem 1.5 (eq. 2.9.19 of
Polchinski Vol. 1)
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to evaluate the ordering constants. Note that the number operators are generally half-integral,
due to the half-integral moding of X2°. This gives rise to the massive spectrum,
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Translational invariance on the worldsheet imposes the condition that
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P= —/ doTl'0, X" = %(N —N)=0. (1.15)
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Thus, we find that the specrum is
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where N = N can be half-integral.



